4.5 Article

Polymer thick film technology for improved simultaneous dEEG/MRI recording: Safety and MRI data quality

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 77, 期 2, 页码 895-903

出版社

WILEY
DOI: 10.1002/mrm.26116

关键词

fMRI; BOLD; eccentricity maps; anthropomorphic head phantom; ISO10974; temperature measurements; B1 maps

资金

  1. National Institute of Neurological Disorders and Stroke [R44NS071988, U01 NS075026]
  2. National Institute of Biomedical Imaging and Bioengineering [R21EB016449]
  3. National Institutes of Health Office of the Director [S10OD010759]
  4. National Center for Research Resources [P41RR14075]
  5. MIND Institute

向作者/读者索取更多资源

PurposeTo develop a 256-channel dense-array electroencephalography (dEEG) sensor net (the Ink-Net) using high-resistance polymer thick film (PTF) technology to improve safety and data quality during simultaneous dEEG/MRI. MethodsHeating safety was assessed with temperature measurements in an anthropomorphic head phantom during a 30-min, induced-heating scan at 7T. MRI quality assessment used B1 field mapping and functional MRI (fMRI) retinotopic scans in three humans at 3T. Performance of the 256-channel PTF Ink-Net was compared with a 256-channel MR-conditional copper-wired electroencephalography (EEG) net and to scans with no sensor net. A visual evoked potential paradigm assessed EEG quality within and outside the 3T scanner. ResultsPhantom temperature measurements revealed nonsignificant heating (ISO 10974) in the presence of either EEG net. In human B1 field and fMRI scans, the Ink-Net showed greatly reduced cross-modal artifact and less signal degradation than the copper-wired net, and comparable quality to MRI without sensor net. Cross-modal ballistocardiogram artifact in the EEG was comparable for both nets. ConclusionHigh-resistance PTF technology can be effectively implemented in a 256-channel dEEG sensor net for MR conditional use at 7T and with significantly improved structural and fMRI data quality as assessed at 3T. Magn Reson Med 77:895-903, 2017. (c) 2016 International Society for Magnetic Resonance in Medicine

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据