4.7 Article

Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked cis-1,4-Polyisoprene toward a High-Performance Elastomer

期刊

MACROMOLECULES
卷 49, 期 22, 页码 8593-8604

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.6b01576

关键词

-

资金

  1. National Basic Research Program of China [2015CB654703]
  2. National Natural Science Foundation of China [51673065, 51333003, U1462116, 51473050]
  3. Natural Science Foundation of Guangdong Province [2014A030310435, 2014A030311051]

向作者/读者索取更多资源

The development of advanced elastomers with a combination of high strength, large extensibility, and excellent flex-cracking resistance is a huge challenge. In this contribution, we proposed a novel strategy to engineer a multinetwork by incorporating weaker sacrificial hydrogen bonds and stronger Zn-based units into a chemically cross-linked cis-1,4-polyisoprene network. The dynamic nature allows the sacrificial bonds to be ruptured and re-formed, resulting in high stretchability. During external loading, the sacrificial bonds rupture prior to fracture of the covalent network, thus dissipating energy efficiently and facilitating chain orientation to produce improved tensile modulus and fracture toughness as well as significant enhancement of flex-cracking resistance. We propose that the enhanced cracking resistance may originate from the energy dissipation and re-forming of sacrificial bonds, a new mechanism alternative to strain-induced crystallization. Overall, this concept provides unique inspiration for the design of advanced elastomers with excellent mechanical properties under both static and dynamic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据