4.7 Article

Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

期刊

MACROMOLECULES
卷 49, 期 3, 页码 833-843

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b02449

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supra-molecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalizalion) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor -based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-contaihing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据