4.5 Article

Enhancing anaerobic digestion of automotive paint sludge through biochar addition

期刊

HELIYON
卷 9, 期 7, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e17640

关键词

Biochar; Biogas; Anaerobic digestion; Automotive paint sludge; Anaerobic sludge

向作者/读者索取更多资源

The reduction of traditional fuel sources and the unpredictability of the global economy have led to a push for renewable energy alternatives. Waste recycling can significantly reduce greenhouse gas emissions. The study investigated the effects of different proportions of biochar on the efficiency of mesophilic anaerobic digestion of automotive paint sludge, and found that adding biochar increased biogas production and improved waste management.
The reduction of traditional fuel sources and the unpredictability of the global economy have led to a push for renewable energy alternatives. Waste recycling can significantly reduce greenhouse gas emissions. In this study, the effects of different proportions of biochar on the efficiency of mesophilic anaerobic digestion of automotive paint sludge were investigated over a period of one month. A combination of paint sludge and anaerobic sludge in a ratio of three to one was used, and biochar was added to the anaerobic digestion reactor in two different amounts of 10 and 26 g/l, with a control sample without biochar. The cumulative volume of biogas produced at the end of the one-month experiment was recorded for three samples: the control sample (without biochar), the second sample (with 2 g of biochar), and the third sample (with 5.2 g of biochar). The volumes of biogas produced were 300, 380, and 530 ml, respectively. Additionally, the COD reduction rates were 25%, 33%, and 48%, and the VS decrement rates were 21%, 27%, and 43%, respectively. The findings showed that adding biochar to the anaerobic digestion reactor containing automotive paint sludge increased biogas production. Additionally, gas chromatography results for an optimal sample of biogas extracted from the anaerobic digestion reactor indicated the presence of about 50% methane gas. These results highlight the potential for utilizing biochar in anaerobic digestion processes to improve renewable energy production and waste management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据