4.5 Article

Enhanced adsorptive removal of rifampicin and tigecycline from single system using nano-ceria decorated biochar of mango seed kernel

期刊

HELIYON
卷 9, 期 5, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e15802

关键词

Adsorption; Biochar; Antibiotics removal; Ceria nanoparticles; Selectivity; Regeneration

向作者/读者索取更多资源

Pharmaceutical compounds pose a growing concern as emerging contaminants in aquatic systems, with antibiotics as a major class. This study successfully utilized mango seeds kernel as an adsorbent to efficiently remove rifampicin and tigecycline from wastewater. The nano-ceria-laden mango seeds kernel exhibited better adsorption performance. This research establishes the suitability of this modified adsorbent as a green, sustainable, cost-effective, selective, and efficient method for pharmaceutical wastewater treatment.
Pharmaceutically active compounds (PhACs) represent an emerging class of contaminants. With a potential to negatively impact human health and the ecosystem, existence of pharmaceuticals in the aquatic systems is becoming a worrying concern. Antibiotics is a major class of PhACs and their existence in wastewater signifies a health risk on the long run. With the purpose of competently removing antibiotics from wastewater, cost-effective, and copiously available wastederived adsorbents were structured. In this study, mango seeds kernel (MSK), both as a pristine biochar (Py-MSK) and as a nano-ceria-laden (Ce-Py-MSK) were applied for the remediation of rifampicin (RIFM) and tigecycline (TIGC). To save time and resources, adsorption experiments were managed using a multivariate-based scheme executing the fractional factorial design (FrFD). Percentage removal (%R) of both antibiotics was exploited in terms of four variables: pH, adsorbent dosage, initial drug concentration, and contact time. Preliminary experiments showed that Ce-Py-MSK has higher adsorption efficiency for both RIFM and TIGC compared to Py-MSK. The %R was 92.36% for RIFM compared to 90.13% for TIGC. With the purpose of comprehending the adsorption process, structural elucidation of both sorbents was performed using FT-IR, SEM, TEM, EDX, and XRD analyses which confirmed the decoration of the adsorbent surface with the nano-ceria. BET analysis revealed that Ce-Py-MSK has a higher surface area (33.83 m2/g) contrasted to the Py-MSK (24.72 m2/g). Isotherm parameters revealed that Freundlich model best fit Ce-Py-MSK-drug interactions. A maximum adsorption capacity (qm) of 102.25 and 49.28 mg/g was attained for RIFM and TIGC, respectively. Adsorption kinetics for both drugs conformed well with both pseudo-second order (PSO) and Elovich models. This study, therefore, has established the suitability of Ce-Py-MSK as a green, sustainable, cost-effective, selective, and efficient adsorbent for the treatment of pharmaceutical wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据