4.5 Article

Mechanism of new optimized Sheng-Mai-San Formula to regulate cardiomyocyte apoptosis through NMDAR pathway

期刊

HELIYON
卷 9, 期 6, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e16631

关键词

NO-SMS; NMDAR pathway; Cardiovascular disease; Cardiomyocyte apoptosis

向作者/读者索取更多资源

New optimized Sheng-Mai-San (NO-SMS) has been shown to be significantly effective in improving cardiac function, increasing exercise tolerance, and slowing the progression of myocardial fibrosis in heart failure patients. This study investigates the relationship between NO-SMS and cardiomyocyte apoptosis through in vivo and in vitro experiments.
Background and objectives: Ischemic heart failure (HF) has become a disease that seriously endangers people's life and health. As a herbal formula widely used in clinical practice, new optimized Sheng-Mai-San (NO-SMS) has been shown to be significantly effective in improving cardiac function, increasing exercise tolerance, and slowing the progression of myocardial fibrosis in heart failure patients in multi-center clinical studies in various regions of China. In our previous pharmacodynamic and toxicological studies, we found that a medium-dose formulation (8.1 g of raw drug/kg) was the most effective in the treatment of heart failure, but its mechanism of action is still being investigated. The present study is exploring its relationship with cardiomyocyte apoptosis.Materials and methods: We investigated and verified this through two parts of experiments, in vivo and in vitro. Firstly, we prepared male SD rats with heart failure models by ligating the left anterior descending branch of the coronary artery (EF & LE; 50%), which were treated with NO-SMS Formula (8.1 g of raw drug/kg/d), Ifenprodil (5.4 mg/kg/d) or Enalapril (0.9 mg/kg/d) prepared suspensions by gavage for 4 weeks. The cardiac and structural changes were evaluated by echocardiography, H & E, and MASSON staining. The apoptosis of cardiomyocytes in each group was detected by Western blot, qRT-PCR, and ELISA. In vitro cell experiments include H9c2 cardiomyocyte injury induced by H2O2 and NMDA respectively, and the groups were incubated with NO-SMS and Ifenprodil-containing serum for 24 h. Apoptosis was detected by Annexin V-FITC/PI double-staining method, and the rest of the assays were consistent with the in vivo experiments. Results: Compared with the model group, the NO-SMS formula group and the Ifenprodil group could significantly improve cardiac function, delay myocardial fibrosis, reduce the expression of pro-apoptotic proteins, mRNA, and the concentration levels of Ca2+ and ROS in heart failure rats and H9c2 cardiomyocytes with H2O2 and NMDA-induced injury, which could significantly reduce the apoptosis rate of damaged cardiomyocytes and effectively inhibit the apoptosis of cardiomyocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据