4.5 Article

A new RNN based machine learning model to forecast COVID-19 incidence, enhanced by the use of mobility data from the bike-sharing service in Madrid

期刊

HELIYON
卷 9, 期 6, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e17625

关键词

COVID-19 short term forecast; LSTM machine learning models; Mobility enhanced models; Open data driven models

向作者/读者索取更多资源

This study proposes a new model that combines current and near-past incidence values and mobility data to predict upcoming COVID-19 infections. The model is applied to Madrid and uses weekly incidence data per district and mobility estimation based on bike-sharing data. The model employs LSTM RNN to detect temporal patterns and combines the output of LSTM layers to learn spatial patterns. The results show an 11.7% increase in accuracy compared to the baseline model that only considers confirmed cases without mobility data.
As a respiratory virus, COVID-19 propagates based on human-to-human interactions with positive COVID-19 cases. The temporal evolution of new COVID-19 infections depends on the existing number of COVID-19 infections and the people's mobility. This article proposes a new model to predict upcoming COVID-19 incidence values that combines both current and near-past incidence values together with mobility data. The model is applied to the city of Madrid (Spain). The city is divided into districts. The weekly COVID-19 incidence data per district is used jointly with a mobility estimation based on the number of rides reported by the bike-sharing service in the city of Madrid (BiciMAD). The model employs a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) to detect temporal patterns for COVID-19 infections and mobility data, and combines the output of the LSTM layers into a dense layer that can learn the spatial patterns (the spread of the virus between districts). A baseline model that employs a similar RNN but only based on the COVID-19 confirmed cases with no mobility data is presented and used to estimate the model gain when adding mobility data. The results show that using the bike-sharing mobility estimation the proposed model increases the accuracy by 11.7% compared with the baseline model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据