4.3 Article

Interaction forces beneath cuffs of physical assistant robots and their motion-based estimation

期刊

ADVANCED ROBOTICS
卷 29, 期 20, 页码 1315-1329

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01691864.2015.1055799

关键词

physical assistant robot; safety; sit-to-stand; human-robot interaction

类别

资金

  1. JSPS KAKENHI [26750121]
  2. Grants-in-Aid for Scientific Research [26750121] Funding Source: KAKEN

向作者/读者索取更多资源

Most lower-limb physical assistant robots are fixed to wearers using cuffs. Hence, skin injuries beneath the cuffs are one of the major concerns of the users. A model that describes the relationship between the body posture and the interaction forces at the cuff was developed for use in assessing the risk of injury and improving user comfort. We measured the motion and interaction force beneath cuffs during the sitting and standing motions of subjects and a physical assistant robot which has been hardly reported thus far. Because of slippage and biomechanical motion, a traditional spring-damper model was found to be insufficient to describe the interaction forces associated with the measured motion of the cuffs. A parameter representing the motion or the knee joint angle was added to take into account these factors. Our model for estimation of the interaction forces using a spring, a damper, and the attitude of the lower leg fits the measured data especially well for the thigh cuff and is better than the traditional model. The applicability of this model was verified for several assist modes and wearers. The model was found to describe approximately 90% of the burden on the wearer, which reached a peak of approximately 60 N, the most hazardous condition. Having been validated for a commercial assistant robot, the model can be used to estimate the skin burdens beneath the cuffs without any force-sensitive elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据