4.7 Article

Defect-rich ultrafine amorphous tin oxyhydroxide nanoparticle anode for high-performance lithium-ion batteries

期刊

MATERIALS TODAY SUSTAINABILITY
卷 22, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtsust.2023.100370

关键词

Tin oxyhydroxide nanoparticles; Amorphous phase; Oxygen vacancy; Anodization; Anode materials

向作者/读者索取更多资源

Amorphous tin oxyhydroxide nanoparticles (a-SnOOH NPs) with sizes less than 5 nm were successfully produced using a facile electrochemical anodization method. Plentiful oxygen vacancies (VOs) generated in the NPs by introducing glycerol into the electrolyte further facilitated the electrochemical kinetics, resulting in improved cell performance.
Metal oxyhydroxide nanostructures are attractive anode materials for lithium-ion batteries (LIBs) because of their appreciable theoretical capacity. In their amorphous phase they can greatly relieve volume changes during cycling, enhancing cycle stability. Here, we successfully produce amorphous tin oxyhydroxide nanoparticles (a-SnOOH NPs) with sizes of less than 5 nm using a facile electrochemical anodization method. Plentiful oxygen vacancies (VOs) are generated in the NPs by simply introducing glycerol into the electrolyte. The numerous defects further facilitate the electrochemical kinetics of the a-SnOOH NPs with rich VOs (a-SnOOH/VO NPs), resulting in better cell performance. With the synergetic combination of amorphous nature and abundant defect sites, the a-SnOOH/VO NP anode for LIBs exhibits a considerable initial discharge capacity of 2171.3 mAh/g at a current rate of 0.2 C and retains a high reversible capacity with a coulombic efficiency of 98.4% after 300 cycles. The ultrafine particles also deliver exceptional rate capability with a large capacity of 641.9 mAh/g even at a high current rate of 20 C.(c) 2023 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据