4.7 Article

Nanoparticle biocoating to create ATP-powered swimmers capable of repairing proteins on the fly

期刊

MATERIALS TODAY ADVANCES
卷 17, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtadv.2023.100353

关键词

Micromotors; Microrobot; Protein repair; ATPase; Chaperone; Heat stress

向作者/读者索取更多资源

One of the futuristic challenges in nanomedicine is to create self-propelled nanorobots to scan and repair living tissues. Researchers have combined nanotechnology and biotechnology to design a biocompatible propulsion system based on the molecular chaperone Hsp90. This propulsion mechanism could be used to design nanodevices capable of performing sophisticated tasks in live biological contexts.
One of the most attractive futuristic challenges in nanomedicine is to create self-propelled nanorobots to scan and repair living tissues at the nano/microscale. Ideally, these devices should navigate using local, inexhaustible biomolecules as energy sources, while performing different functions, such as delivering drugs or repairing tissues. In this study, we combine nanotechnology and biotechnology to design a biocompatible propulsion system based on the molecular chaperone Hsp90, a heat-shock protein (Hsp) that, in the presence of adenosine 50-triphosphate (ATP), undergoes nanoscale conformational changes while trapping and renaturing other proteins. We show how, subjected to ATP availability in the medium, Hsp90-functionalized particles significantly enhance their diffusion motion, being able to achieve ballistic motion, while keeping the ability to restore the activity of surrounding heat-inactivated proteins. This biomechanics-based propulsion mechanism represents a promising strategy for the design of self-propelled nanodevices capable of performing sophisticated tasks in live biological contexts that include sensing the environment, recognizing and capturing, folding, and restoring defective proteins on the fly. In the short term, Hsp90-driven nanodevices could be applied to improve industrial processes that require enzymatic catalysis and high temperatures. But in the medium to long term, this bioactive coating could be used in the design of nanomachines that, like mini-robots, navigate the complex body cavities of biological tissues, deliver therapies and/or remove misfolded proteins in disorders such as Alzheimer's or Parkinson's disease.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据