4.7 Article

Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments

期刊

HORTICULTURAE
卷 9, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/horticulturae9020278

关键词

heavy metals; metal toxicity; soil amendments; lead contamination; plant uptake; liming

向作者/读者索取更多资源

The aim of this study was to evaluate the immobilization potential of lead (Pb) in soil by applying organic and inorganic amendments, in combination with diammonium phosphate (DAP). The results showed that the combination of organic amendments and a low rate of DAP resulted in the highest dry yield of carrot. Inorganic bonemeal combined with DAP was the most effective in immobilizing Pb in soil.
The intensive use of lead (Pb)-based insecticides (lead arsenate, PbHAsO4) has led to Pb accumulation in agricultural soil, endangering human health through the possibility of transferring it to the food chain. The aim of this study was to evaluate the potential for the immobilization of Pb in the soil by applying organic (sludge, biocompost, yard compost, and peat) and inorganic (bonemeal, zeolite, lime, and wood ash) amendments, in combination with diammonium phosphate (DAP) in a greenhouse experiment. Two amendment rates were used: low and high, and three rates of DAP: 0 (zero), low (0.25 g of DAP/kg soil), and high (1.25 g DAP/kg soil). The results showed that the dry yield of carrot (Daucus carota susp. sativus) was the highest for the organic amendments in combination with the low rate of DAP. The high rate of inorganic amendments also increased the yield. Applications of inorganic bonemeal, inorganic lime, and inorganic wood ash yielded the lowest Pb tissue concentration (TC), and organic peat had the highest Pb TC. Inorganic bonemeal combined with DAP most effectively immobilized Pb in soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据