4.5 Article

Cysteinylation of a monoclonal antibody leads to its inactivation

期刊

MABS
卷 8, 期 4, 页码 718-725

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19420862.2016.1160179

关键词

Antibody; biacore; cysteinylation; electrospray ionization mass spectrometry; hydrophobic interaction chromatography; molecular modeling

向作者/读者索取更多资源

Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据