4.7 Article

Fully 3D-printed organic electrochemical transistors

期刊

NPJ FLEXIBLE ELECTRONICS
卷 7, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41528-023-00245-4

关键词

-

向作者/读者索取更多资源

A direct-write additive process was developed to fabricate fully 3D-printed organic electrochemical transistors (OECTs) using 3D printable inks. These OECTs can be fabricated on flexible substrates, providing high mechanical and environmental stability. They exhibit good dopamine biosensing capabilities and long-term synapse response, making them suitable for various applications such as sensors and neuromorphic hardware.
Organic electrochemical transistors (OECTs) are being researched for various applications, ranging from sensors to logic gates and neuromorphic hardware. To meet the requirements of these diverse applications, the device fabrication process must be compatible with flexible and scalable digital techniques. Here, we report a direct-write additive process to fabricate fully 3D-printed OECTs, using 3D printable conducting, semiconducting, insulating, and electrolyte inks. These 3D-printed OECTs, which operate in the depletion mode, can be fabricated on flexible substrates, resulting in high mechanical and environmental stability. The 3D-printed OECTs have good dopamine biosensing capabilities (limit of detection down to 6 mu M without metal gate electrodes) and show long-term (similar to 1 h) synapse response, indicating their potential for various applications such as sensors and neuromorphic hardware. This manufacturing strategy is suitable for applications that require rapid design changes and digitally enabled direct-write techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据