4.6 Article

Solvent-free Ternary Polymer Electrolytes with High Ionic Conductivity for Stable Sodium-based Batteries at Room Temperature

期刊

BATTERIES & SUPERCAPS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/batt.202300092

关键词

-

向作者/读者索取更多资源

Transitioning to solid-state batteries with polymer electrolytes can enhance safety and enable higher energy densities. This study develops solvent-free ternary polymer electrolytes based on cross-linked polyethylene oxide (PEO), sodium bis(fluorosulfonyl) imide (NaFSI) or sodium bis(trifluoromethanesulfonyl) imide (NaTFSI), and N-butyl-N-methyl-pyrrolidinium-based ionic liquids (ILs, Pyr(14)FSI or Pyr(14)TFSI). These polymer electrolytes demonstrate good thermal and electrochemical stability, as well as high ionic conductivities, making them suitable for use in sodium-metal batteries operating at room temperature.
Transitioning to solid-state batteries using polymer electrolytes results in inherently safer devices and can facilitate the use of sodium metal anodes enabling higher energy densities. In this work, solvent-free ternary polymer electrolytes based on cross-linked polyethylene oxide (PEO), sodium bis(fluorosulfonyl) imide (NaFSI) or sodium bis(trifluoromethanesulfonyl) imide (NaTFSI) and N-butyl-N-methyl-pyrrolidinium-based ionic liquids (ILs, Pyr(14)FSI or Pyr(14)TFSI) are developed. Synthesized polymer membranes are thoroughly characterized, verifying their good thermal and electrochemical stability, as well as a low glass transition and crystallinity, thus high segmental mobility of the polymer matrix. The latter results in good ionic conductivities around 1x10(-3) S cm(-1) at 20 degrees C. The polymer electrolytes are successfully employed in sodium-metal battery (SMB) cells operating at room temperature (RT) and using P2-Na2/3Ni1/3Mn2/3O2 layered oxide as cathode. The electrochemical performance strongly depends on the choice of anion in the conducting sodium salt and plasticizing IL. Furthermore, this solid-state SMB approach mitigates capacity fading drivers for the P2-Na2/3Ni1/3Mn2/3O2, resulting in high Coulombic efficiency (99.91 %) and high capacity retention (99 % after 100 cycles) with good specific capacity (140 mAh g(-1)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据