4.6 Article

Bioinformatic Modeling (In Silico) of Obtaining Bioactive Peptides from the Protein Matrix of Various Types of Milk Whey

期刊

FERMENTATION-BASEL
卷 9, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/fermentation9040380

关键词

whey; protein; bioactive peptides; in silico; antioxidative; ACE-inhibitory; DPP-IV-inhibitory; allergenicity; toxicity

向作者/读者索取更多资源

This research generated a digital model of the peptide complex of different whey types with predicted bioactivity, safety, and sensory properties using bioinformatic modeling approaches. The study found that hydrolysis by the protease complex chymotrypsin C-subtilisin was the most effective method to release peptides with both antioxidant and ACE-inhibitory activity. It was also observed that the bioactive peptides obtained as a result of in silico hydrolysis after GI digestion simulation can be considered safe in terms of allergic reactions and toxicological effects.
Whey is a by-product of the production of various types of cottage cheese and cheese, casein, and coprecipitates. Conditions of milk coagulation directly affect the physico-chemical properties of whey and the formation of its protein profile. This fact makes it difficult to standardize the protein profile of milk whey for its further processing. Whey proteins have a great potential to release a wide range of bioactive peptides (BAP), capable of reducing the risk of a number of chronic food-related diseases. Computer modeling of an enzymatic hydrolysis of proteins is one of the ways to increase the efficiency of BAP release studies and to reduce the number of labor consuming experiments. This research is aimed at generating a digital model of the peptide complex of different whey types with predicted bioactivity, safety, and sensory properties using bioinformatic modeling approaches. The study was performed with the use of the proteomic databases tools according to the algorithm of hybrid strategy of bioinformatic modeling developed earlier. As a result of the study, taking into account the ranking of the proteins ratio in the protein profile, the hydrolysis by the protease complex chymotrypsin C-subtilisin was characterized as the maximum efficacy method to release peptides with both antioxidant and ACE-inhibitory activity. It was also observed that the bioactive peptides obtained as a result of in silico hydrolysis after GI digestion simulation can be considered safe in terms of allergic reactions and toxicological effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据