4.8 Article

Vaterite-nanosilver hybrids with antibacterial properties and pH triggered release

期刊

MATERIALS TODAY CHEMISTRY
卷 30, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2023.101586

关键词

Calcium carbonate; Sodium poly(4-styrenesulfonic acid) sodium; salt; Recrystallization; Controlled release

向作者/读者索取更多资源

Silver nanoparticles (AgNPs) loaded into vaterite CaCO3 crystals can be protected, stored, and controlled for release, resulting in CaCO3/AgNPs hybrids. The addition of poly(4-styrenesulfonic acid) sodium salt (PSS) stabilizes and targets the release of AgNPs. This study sheds light on the release mechanisms of AgNPs from the inorganic hybrids and has implications for understanding the release profiles of other compounds from vaterite.
Silver nanoparticles (AgNPs) have been used for over a century in various applications due to their distinctive properties. Nonetheless, the poor stability of AgNPs and adverse effects on living organisms have driven the search for materials able to protect and better control their release. Vaterite CaCO3 crystals have been studied in the last two decades as carriers for different drugs due to their biocom-patibility, easy synthesis and pH-sensitive properties. Herein, AgNPs were loaded into vaterite to protect, store, and control their release, resulting in CaCO3/AgNPs hybrids. To tune the release of the AgNPs, the recrystallization of the hybrids into thermodynamically more stable calcite was studied and modulated with carboxymethyl-dextran (DexCM) and poly(4-styrenesulfonic acid) sodium salt (PSS), with the last one being able to stabilise the hybrids and prevent a premature release of the AgNPs at low contents (2%, w/w). The release of AgNPs from the hybrids was studied at pH 5 to 9, showing a pH-dependent release suppression for PSS-stabilised hybrids. Various mathematical models were applied to clarify the release mechanism, confirming the role of PSS in stabilising and targeting the release of AgNPs. The antibacterial studies demonstrated that the hybrids protect the AgNPs without affecting their activity, with the released nanoparticles being effective against Escherichia coli, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Overall, this work sheds light on the release mechanisms of AgNPs from the inorganic hybrids helping to foresee the release profiles of other compounds from vaterite. & COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据