4.7 Article

High-Performance Flexible Humidity Sensor Based on MoOX Nanoparticle Films for Monitoring Human Respiration and Non-Contact Sensing

期刊

ACS APPLIED NANO MATERIALS
卷 6, 期 8, 页码 7011-7021

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.3c01131

关键词

humidity sensor; MoOx nanoparticle film; respiratory monitoring; non-contact sensing; cluster beam deposition

向作者/读者索取更多资源

In this study, a resistive humidity sensor based on molybdenum oxide nanoparticles was fabricated on a flexible substrate using a nanocluster deposition technique. The sensor showed high sensitivity, fast response time, wide detection range, and excellent stability. It has potential applications in electronic skin, healthcare, and non-contact sensing.
Flexible humidity sensors with high sensitivity, fast response time, and outstanding reliability have the potential to revolutionize electronic skin, healthcare, and non-contact sensing. In this study, we employed a straightforward nanocluster deposition technique to fabricate a resistive humidity sensor on a flexible substrate, using molybdenum oxide nanoparticles (MoOx NPs). We systematically evaluated the humidity-sensing behaviors of the MoOx NP film-based sensor and found that it exhibited exceptional sensing capabilities. Specifically, the sensor demonstrated high sensitivity (18.2 near zero humidity), a fast response/recovery time (1.7/2.2 s), and a wide relative humidity (RH) detection range (0-95%). The MoOx NP film, with its closely spaced granular nanostructure and high NP packing density, exhibited insensitivity to mechanical deformation, small hysteresis, good repeatability, and excellent stability. We also observed that the device exhibited distinct sensing kinetics in the range of high and low RH. Specifically, for RH > 43%, the response time showed a linear prolongation with increased RH. This behavior was attributed to two factors: the higher physical adsorption energy of H2O molecules and a multilayer physical adsorption process. In terms of applications, our sensor can be easily attached to a mask and has the potential to monitor human respiration owing to its high sensing performance. Additionally, the sensor was capable of dynamically tracking RH changes surrounding human skin, enabling a non-contact sensing capability. More significantly, we tested an integrated sensor array for its ability to detect moisture distribution in the external environment, demonstrating the potential of our sensor for contactless human-machine interaction. We believe that this innovation is particularly valuable during the COVID-19 epidemic, where cross-infection may be averted by the extensive use of contactless sensing. Overall, our findings demonstrate the tremendous potential of MoOx NP-based humidity sensors for a variety of applications, including healthcare, electronic skin, and non-contact sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据