4.7 Article

Nanoporous Sulfonic Covalent Organic Frameworks for Selective Adsorption and Separation of Lanthanide Elements

期刊

ACS APPLIED NANO MATERIALS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.2c04848

关键词

ionic covalent organic frameworks; sulfonic acid group; adsorption separation; lanthanide elements; high selectivity

向作者/读者索取更多资源

In this study, novel nanoporous sulfonic covalent organic frameworks (TFPB-DABDA iCOFs) were successfully synthesized and found to have highly selective adsorption separation ability for lanthanide elements, especially for those with larger ionic radius differences.
Lanthanides are a group of important elements and have been widely used in many fields. Their separation is crucial for technical applications, but it remains a troublesome task due to their subtly different properties. Herein, novel nanoporous sulfonic covalent organic frameworks were synthesized by the Schiff base reaction of 1,3,5-tris(p-formylphenyl)benzene (TFPB) and 2,5-diaminobenzene-1,4-disulfonic acid (DABDA) under mild con-ditions, which were defined as TFPB-DABDA iCOFs and used for highly selective adsorption separation of lanthanide elements. These iCOFs have uniform morphology, good stability, and excellent adsorption separation ability. The experiment results indicate that the adsorption capacity of TFPB-DABDA iCOFs is highly sensitive to the ionic radius. It means that the larger the size difference between ions, the higher the separation selectivity, especially in the early lanthanides (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+) and late lanthanides (Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Lu3+). The separation mechanism of lanthanide elements by TFPB-DABDA iCOFs may be related to the sulfonic acid groups in the ordered channels of the COFs. This work develops a simple and efficient strategy for the synthesis of iCOFs, which shows a promising application of effective adsorption separation of lanthanides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据