4.7 Article

Interconnected Sn@SnO2 Nanoparticles as an Anode Material for Lithium-Ion Batteries

期刊

ACS APPLIED NANO MATERIALS
卷 6, 期 13, 页码 11070-11076

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.3c00854

关键词

lithium-ion battery; ammonia-borane reduction; tin; core-shell nanoparticle; discharge-chargecapacity

向作者/读者索取更多资源

Ammonia-borane reduction of tin (II) chloride was used to prepare customized and interconnected Sn@SnO2 core-shell nanoparticles. The Sn@SnO2-based electrode exhibited high reversible capacity, rate capability, and capacity retention, as well as low charge transfer resistance and electrode polarization. The presence of voids and a SnO2 shell in the interconnected Sn@SnO2 nanoparticles contributed to stable lithium-ion storage.
Ammonia-borane reduction of tin (II) chloride was utilizedto preparecustomized and interconnected Sn@SnO2 core-shellnanoparticles. Remarkably, the Sn@SnO2-based electrodedelivered a reversible capacity of 722 mAh g(-1) at0.5 C after 200 cycles with a Coulombic efficiency of similar to 99%.Also, this electrode exhibited a high rate capability (564 mAh g(-1) at 1.0 C), low charge transfer resistance (44.7 omega),and reasonable electrode polarization (146 mV vs Li/Li+), which led to a high capacity retention (similar to 94%). Additionally,the kinetics of Li-ion storage of the sample revealed that the capacitance contribution plays a main roleat fast C-rates. This new nanoarchitecture is promising for stablelithium-ion storage because of the presence of voids and a SnO2 shell in the interconnected Sn@SnO2 nanoparticles,in which the cavities mitigate its volume expansion upon cycling;meanwhile, the SnO2 layer increases its capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据