4.7 Article

Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan

期刊

AGRICULTURE-BASEL
卷 13, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture13061195

关键词

yield forecasting; remote sensing; machine learning; cereals; oilseeds; grain legumes; forage crops; sustainable farming practices

类别

向作者/读者索取更多资源

The article discusses the accuracy of yield forecasting algorithms and presents a unified methodology based on remote sensing data for crop yield prediction. The study finds that yields can be predicted using NDVI vegetation index data and meteorological data. Machine learning algorithms are used to calculate the relationship between these indicators and build a neural network for yield prediction. The research shows that multi-layer perceptron and polynomial regression have the highest prediction accuracy for all crops.
The article provides an overview of the accuracy of various yield forecasting algorithms and offers a detailed explanation of the models and machine learning algorithms that are required for crop yield forecasting. A unified crop yield forecasting methodology is developed, which can be adjusted by adding new indicators and extensions. The proposed methodology is based on remote sensing data taken from free sources. Experiments were carried out on crops of cereals, legumes, oilseeds and forage crops in eastern Kazakhstan. Data on agricultural lands of the experimental farms were obtained using processed images from Sentinel-2 and Landsat-8 satellites (EO Browser) for the period of 2017-2022. In total, a dataset of 1600 indicators was collected with NDVI and MSAVI indices recorded at a frequency of once a week. Based on the results of this work, it is found that yields can be predicted from NDVI vegetation index data and meteorological data on average temperature, surface soil moisture and wind speed. A machine learning programming language can calculate the relationship between these indicators and build a neural network that predicts yield. The neural network produces predictions based on the constructed data weights, which are corrected using activation function algorithms. As a result of the research, the functions with the highest prediction accuracy during vegetative development for all crops presented in this paper are multi-layer perceptron, with a prediction accuracy of 66% to 99% (85% on average), and polynomial regression, with a prediction accuracy of 63% to 98% (82% on average). Thus, it is shown that the use of machine learning and neural networks for crop yield prediction has advantages over other mathematical modelling techniques. The use of machine learning (neural network) technologies makes it possible to predict crop yields on the basis of relevant data. The individual approach of machine learning to each crop allows for the determination of the optimal learning algorithms to obtain accurate predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据