4.6 Article

Variation in microbial CAZyme families across degradation severity in a steppe grassland in northern China

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2023.1080505

关键词

grassland degradation; CAZyme; soil organic carbon; plant community; metagenomics

向作者/读者索取更多资源

Using a metagenomic approach, this study revealed that grassland degradation significantly affects the abundance and composition of carbohydrate-active enzyme (CAZYme) genes responsible for C cycling. Severely degraded grassland showed higher CAZyme abundance compared to other degradation severities. The interaction between degradation severity, soil depth, and soil carbon fractions influenced the composition of CAZyme gene families.
Little is known about the effects of grassland degradation on the carbohydrate-active enzyme (CAZYme) genes responsible for C cycling. Here we used a metagenomic approach to reveal variation in abundance and composition of CAZyme genes in grassland experiencing a range of degradation severity (i.e., non-, light, moderately, and severely degraded) in two soil layers (0-10 cm, 10-20 cm) in a steppe grassland in northern China. We observed a higher CAZyme abundance in severely degraded grassland compared with the other three degradation severities. Glycoside hydrolase (GH) and glycosyltransferase (GT) were identified as the most abundant gene families. The Mantel test and variation partitioning suggested an interactive effect of degradation severity and soil depth with respect to CAZyme gene composition. Structural equation modeling indicated that total soil carbon, microbial biomass carbon and organic carbon were the three soil characteristics most important to CAZyme abundance, which suggests an interaction between degradation and soil carbon fractions in determining CAZyme gene composition. Both above- and below-ground factors linked to soil organic matter play a central role in determining the abundance of CAZyme gene families.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据