4.6 Article

Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles

期刊

QUANTUM
卷 7, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2023-02-09-914

关键词

-

向作者/读者索取更多资源

This article presents a method to detect bipartite entanglement using number-phase-like uncertainty relations in split spin ensembles. An uncertainty relation is derived for spin systems, which allows for the detection of bipartite entanglement in an unpolarized Dicke state of many spin1/2 particles. The method involves splitting the particles into two subensembles and conducting collective angular momentum measurements locally on each part.
We present a method to detect bipartite entanglement based on number-phase-like uncertainty relations in split spin ensembles. First, we derive an uncertainty relation that plays the role of a number-phase uncertainty for spin systems. It is important that the relation is given with well-defined and easily measurable quantities, and that it does not need assuming infinite dimensional systems. Based on this uncertainty relation, we show how to detect bipartite entanglement in an unpolarized Dicke state of many spin1/2 particles. The particles are split into two subensembles, then collective angular momentum measurements are carried out locally on the two parts. First, we present a bipartite Einstein-Po dolsky-Rosen (EPR) steering criterion. Then, we present an entanglement condition that can detect bipartite entanglement in such systems. We demonstrate the utility of the criteria by applying them to a recent experiment given in K. Lange et al. [Science 360, 416 (2018)] realizing a Dicke state in a Bose-Einstein condensate of cold atoms, in which the two subensembles were spatially separated from each other. Our methods also work well if split spin-squeezed states are considered. We show in a comprehensive way how to handle experimental imperfections, such as the nonzero particle number variance including the partition noise, and the fact that, while ideally BECs occupy a single spatial mode, in practice the population of other spatial modes cannot be fully suppressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据