4.7 Article

The Fate of Heavy Metals and Risk Assessment of Heavy Metal in Pyrolysis Coupling with AcidWashing Treatment for Sewage Sludge

期刊

TOXICS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/toxics11050447

关键词

sludge; pyrolysis; phosphoric acid; heavy metals; removal efficiency; environmental risk

向作者/读者索取更多资源

This study investigated the fate of heavy metals in sewage sludge during pyrolysis coupled with acid washing treatment. Phosphoric acid was found to effectively remove most of the heavy metals, including copper, zinc, and chromium. The optimal washing conditions for heavy metal removal were determined, achieving a removal efficiency of 95.05%. After acid washing, the leaching concentrations of heavy metals in the solid residue were below the USEPA limit, indicating a low environmental risk.
Pyrolysis is an emerging and effective means for sludge disposal. Biochar derived from sludge has broad application prospects, however, is limited by heavy metals. In this study, the fate of heavy metals (HMs) in pyrolysis coupling with acid washing treatment for sewage sludge was comprehensively investigated for the first time. Most of the HMs redistributed in the pyrolyzed residues (biochar) after pyrolysis, and the enrichment order of the HMs was: Zn > Cu > Ni > Cr. Compared with various washing agents, phosphoric acid presented a superior washing effect on most heavy metals (Cu, Zn, and Cr) in biochars derived at low pyrolysis temperature and Ni in biochars derived at high pyrolysis temperature. The optimal washing conditions for heavy metals (including Cu, Zn, Cr, and Ni) removal by H3PO4 were obtained by batch washing experiments and the response surface methodology (RSM). The total maximum HM removal efficiency was 95.05% under the optimal washing specifications by H3PO4 (acid concentration of 2.47 mol/L, L/S of 9.85 mL/g, and a washing temperature of 71.18 degrees C). Kinetic results indicated that the washing process of heavy metals in sludge and biochars was controlled by a mixture of diffusion and surface chemical reactions. After phosphoric acid washing, the leaching concentrations of HMs in the solid residue were further reduced compared with that of biochar, which were below the USEPA limit value (5 mg/L). The solid residue after pyrolysis coupling with acid washing resulted in a low environmental risk for resource utilization (the values of the potential ecological risk index were lower than 20). This work provides an environmentally friendly alternative of pyrolysis coupling with acid washing treatment for sewage sludge from the viewpoint of the utilization of solid waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据