4.7 Article

Research on dehumidification optimization of steam turbine wet steam stage hollow stator cascade heating

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2023.103030

关键词

Wet steam; Condensation flow; Hollow stator; Orthogonal test; Steam membrane

向作者/读者索取更多资源

Secondary water droplets in the steam turbine wet steam stage can cause water erosion damage to the rotor cascade, affecting the turbine's operation and efficiency. Controlling the formation of a water film on the stator blade surface is crucial for improving efficiency and safety.
The secondary water droplets in the steam turbine wet steam stage are easy to cause water erosion damage to the rotor cascade, and there is a large speed slip between the main steam flow and the secondary water droplets, which will seriously affect the safe and stable operation and reduce the efficiency of the steam turbine. Secondary water droplets are formed when the water film deposited on the stator blade surface falls off at the trailing edge. Therefore, controlling the formation of a water film on the stator blade surface plays an important role in improving the efficiency and safety of the steam turbine wet steam stage. Based on the current research situation at home and abroad, taking the Dykas cascade as the research object, it is found that the covering area of dry steam film on blade surface expands with the increase of temperature and flow of hot steam inlet. With the increase of hot steam back-pressure, the wetness of blade surface increases. When the average heat flux on the blade surface reaches 5000W/m2, there will be no water film falling off the blade surface. By orthogonal test, the expression between the average heat flux on the blade surface, the inlet temperature, the flow rate and the back-pressure was obtained. The research results can provide reference for the parameter design of steam turbine hollow stator heating dehumidification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据