4.7 Article

Heat and mass transfer analysis for MHD bioconvection peristaltic motion of Powell-Eyring nanofluid with variable thermal characteristics

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2022.102692

关键词

Powell-Eyring nanofluid; Peristalsis; Temperature dependent viscosity; ModifiedDarcy?s law; Gyrotactic microorganism; Heat and mass transfer

向作者/读者索取更多资源

This study investigates the effects of mass and heat transfer on the bioconvective peristaltic transport of Powell-Eyring nanofluid under a curved channel with a magnetic field. Various factors such as Ohmic heating, motile microorganisms, thermal radiation, variable properties, Brownian and thermophoresis motion are taken into account. The results show that the stability of nanoparticles and heat transfer are enhanced by the presence of motile microorganisms. The model is simplified using lubricant approximations and numerical solutions are obtained using NDSolve in Mathematica.
Present study describes the influences of mass and heat transfer on Magnetohydrodynamics (MHD) bioconvective peristaltic transport of Powell-Eyring nanofluid through a curved channel with radius dependent magnetic field. Modified Darcy's law, Ohmic heating, motile gyrotactic microorganisms, thermal radiation, variable properties, Brownian and thermophoresis motion are also considered. Furthermore, velocity and thermal slip conditions were employed in the analysis. The phenomenon of motile microorganisms enhances the stability of nanoparticles as well as improves heat transfer. The microorganism concept is accepted only for the stabilization of suspended nanomaterials due to bioconvection, which is facilitated by combined impacts of a magnetic field and buoyancy forces. Modified Darcy's law is used to model flow through a porous space. Governing equations for the proposed model are simplified by using lubricant approximations. NDSolve (built-in command in Mathematica) is used to obtain the numerical solutions for axial velocity, concentration profile, density of motile microorganism distribution, magnitude of temperature, analysis of heat and mass transfer. Obtained results are presented graphically for different values of flow quantities of interest. The results report that increasing the radiation and variable viscosity parameters diminishes the nanofluid temperature. It is observed that heat transfer rates are enhanced by improving heat source/sink and Powell-Eyring fluid parameters. Outcomes reveal that a growth in curvature and Hartman number reduce the axial velocity of nanofluid. Moreover, concentration distribution improves for larger values of the Brownian motion coefficient. The density of motile microorganisms drops by increasing bioconvection Peclet number. Mass transfer rates slightly improves when Hartman number is increased. In addition, results for the planner channel can be attained for the larger values of curvature parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据