4.7 Article

Algae drive convergent bacterial community assembly at low dilution frequency

期刊

ISCIENCE
卷 26, 期 6, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.106879

关键词

-

向作者/读者索取更多资源

Microbial community assembly is a complex process that determines community structure and function. This study investigated how external nutrient supply rate influenced interactions and therefore community assembly. The presence of algae strongly influenced community assembly, leading to convergence of initially diverse bacterial consortia. This study highlights the importance of understanding assembly processes in complex phototroph-heterotroph communities for global ecosystem functioning.
Microbial community assembly is a complex dynamical process that determines community structure and function. The interdependence of inter-species interactions and nutrient availability presents a challenge for understanding community assembly. We sought to understand how external nutrient supply rate modulated interactions to affect the assembly process. A statistical decomposition of taxonomic structures of bacterial communities assembled with and without algae and at varying dilution frequencies allowed the separation of the effects of biotic (presence of algae) and abiotic (dilution frequency) factors on community assembly. For infrequent dilutions, the algae strongly impact community assembly, driving initially diverse bacterial consortia to converge to a common structure. Analyzing sequencing data revealed that this convergence is largely mediated by a decline in the relative abundance of specific taxa in the presence of algae. This study shows that complex phototroph-heterotroph communities can be powerful model systems for understanding assembly processes relevant to the global ecosystem functioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据