4.7 Article

Beat encoding at mistuned octaves within single electrosensory neurons

期刊

ISCIENCE
卷 26, 期 7, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.106840

关键词

-

向作者/读者索取更多资源

This study investigated the behavioral relevance and underlying mechanisms of beat perception in electric fish. The results revealed strong responses of electroreceptor afferents to mistuned octaves, suggesting that common methods for extracting amplitude modulations are not sufficient to explain these responses. Mathematical reasoning and simulations indicate that smoothing out the half-wave rectification process may be necessary for a better understanding of beat perception at carrier octaves.
Beats are slow periodic amplitude modulations resulting from the superposition of two spectrally close periodic signals. The difference frequency between the signals sets the frequency of the beat. A field study in the electric fish Apteronotus rostratus showed the behavioral relevance of very high difference frequencies. Contrary to expectations from previous studies, our electrophysiological data show strong responses of p-type electroreceptor afferents whenever the difference frequency approaches integer multiples (mistuned octaves) of the fish's own electric field frequency (carrier). Mathematical reasoning and simulations show that common approaches to extract amplitude modulations, such as Hilbert transform or half-wave rectification, are not sufficient to explain the responses at carrier octaves. Instead, half-wave rectification needs to be smoothed out, for example by a cubic function. Because electroreceptive afferents share many properties with auditory nerve fibers, these mechanisms may underly the human perception of beats at mistuned octaves as described by Ohm and Helmholtz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据