4.7 Article

Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment

期刊

ISCIENCE
卷 26, 期 3, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.106188

关键词

-

向作者/读者索取更多资源

Solar photovoltaics (PVs) installation is predicted to increase 20-fold by 2050. However, the production process of PV panels generates significant greenhouse gas emissions, which vary depending on the grid emissions. A dynamic life cycle assessment (LCA) model was developed to evaluate the carbon footprint of PV panels manufactured and installed in the United States. The estimated state-level carbon footprint of solar electricity in 2050 is significantly lower than the comparison benchmark, indicating the potential for a carbon-neutral energy system.
Solar photovoltaics (PVs) installation would increase 20-fold by 2050; however, considerable greenhouse gas (GHG) emissions are generated during the cradle-to-gate production, with spatiotemporal variances depending on the grid emission. Thus, a dynamic life cycle assessment (LCA) model was developed to assess the accumulated PV panels with a heterogeneous carbon footprint if manufactured and installed in the United States. The state-level carbon footprint of solar electricity (CFEPV-avg) from 2022 to 2050 was estimated using several cradle-to-gate production scenarios to account for emissions stemming from electricity generated from solar PVs. The CFEPV-avg (min 0.032, max 0.051, weighted avg. 0.040 kg CO2-eq/kWh) in 2050 will be significantly lower than that of the comparison benchmark (min 0.047, max 0.068, weighted avg. 0.056 kg CO2-eq/kWh). The proposed dynamic LCA framework is promising for planning solar PV supply chains and, ultimately, the supply chain of an entire carbon-neutral energy system to maximize the environmental benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据