4.7 Article

Intrinsic randomness in epidemic modelling beyond statistical uncertainty

期刊

COMMUNICATIONS PHYSICS
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42005-023-01265-2

关键词

-

向作者/读者索取更多资源

This study characterizes the uncertainty in infectious disease outbreaks, including intrinsic randomness and imperfect knowledge of parameters, using a time-varying general branching process model. They find that substantial variation in outbreak size can occur even without superspreading, and the uncertainty of outbreaks grows rapidly. Forecasting that only considers imperfect knowledge of parameters significantly underestimates the true extent of potential risk.
Uncertainty can be classified as either aleatoric (intrinsic randomness) or epistemic (imperfect knowledge of parameters). The majority of frameworks assessing infectious disease risk consider only epistemic uncertainty. We only ever observe a single epidemic, and therefore cannot empirically determine aleatoric uncertainty. Here, we characterise both epistemic and aleatoric uncertainty using a time-varying general branching process. Our framework explicitly decomposes aleatoric variance into mechanistic components, quantifying the contribution to uncertainty produced by each factor in the epidemic process, and how these contributions vary over time. The aleatoric variance of an outbreak is itself a renewal equation where past variance affects future variance. We find that, superspreading is not necessary for substantial uncertainty, and profound variation in outbreak size can occur even without overdispersion in the offspring distribution (i.e. the distribution of the number of secondary infections an infected person produces). Aleatoric forecasting uncertainty grows dynamically and rapidly, and so forecasting using only epistemic uncertainty is a significant underestimate. Therefore, failure to account for aleatoric uncertainty will ensure that policymakers are misled about the substantially higher true extent of potential risk. We demonstrate our method, and the extent to which potential risk is underestimated, using two historical examples. Intrinsic randomness is a critical source of uncertainty in infectious disease outbreaks. The authors show in a series of analytical results how this source of uncertainty can be better characterised.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据