4.7 Article

High-Efficiency Binary Organic Solar Cells Enabled by Pseudo-Bilayer Configuration in Dilute Solution

期刊

SOLAR RRL
卷 7, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202201090

关键词

cascaded components; crystallization; dilute solutions; pseudo-bilayer heterojunctions

向作者/读者索取更多资源

A high-performance pseudo-bilayer heterojunction (PBHJ) organic solar cell with donor:acceptor (D:A) bilayer architecture is reported. The pseudo-bilayer films enable vertical distribution of cascaded components and large D/A interfaces for efficient exciton dissociation. The devices based on PM6:Y6 and PTQ10:Y6 exhibit high power conversion efficiencies of 17.73% and 17.81%, respectively.
Forming proper film morphology in organic solar cells (OSCs) is important to govern the exciton dissociation and charge transport. Herein, high-performance pseudo-bilayer heterojunction (PBHJ) OSCs with donor:acceptor (D:A) bilayer architecture are reported by sequentially depositing two layers of diluted active solution with different D:A ratios. Such pseudo-bilayer films can not only enable the cascaded components distributed in the vertical direction, but also afford large donor and acceptor (D/A) interfaces for efficient exciton dissociation. Additionally, the D:A active layer on the bottom substrate can act as a seed to promote the crystallization process of the upper film during the sequential casting process. The PBHJ strategy on two representative D:A blends, PM6:Y6 and PTQ10:Y6, is implemented. Benefiting from the synergetic effects of efficient exciton dissociation and balanced charge transport, the devices based on PM6:Y6 and PTQ10:Y6 show high power conversion efficiencies of 17.73% and 17.81%, respectively. Notably, the presented PBHJ devices are fabricated by using dilute chloroform solution (4 mg mL(-1) for donor), demonstrating the excellent potential for poorly soluble donors and acceptors in future OSCs applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据