4.7 Article

RNA sequencing reveals CircRNA expression profiles in chicken embryo fibroblasts infected with velogenic Newcastle disease virus

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2023.1167444

关键词

chicken embryo fibroblasts; Newcastle disease virus; RNA sequencing; infection; circular RNA

向作者/读者索取更多资源

In this study, circRNA transcriptome sequencing was used to analyze the differences in circRNA expression profiles after velogenic NDV infection in chicken embryo fibroblasts (CEFs). The results showed that NDV infection altered circRNA expression profiles in CEFs and revealed significant enrichment of differentially expressed (DE) circRNAs for metabolism-related pathways. Further analysis and validation demonstrated that circRNAs are involved in NDV replication by regulating metabolism-related genes and miRNA. These findings provide new insights into the mechanisms underlying NDV-host interactions.
IntroductionNewcastle disease virus (NDV) is an important avian pathogen prevalent worldwide; it has an extensive host range and seriously harms the poultry industry. Velogenic NDV strains exhibit high pathogenicity and mortality in chickens. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. They are part of the innate immunity and antiviral response. However, the relationship between circRNAs and NDV infection is unclear. MethodsIn this study, we used circRNA transcriptome sequencing to analyze the differences in circRNA expression profiles post velogenic NDV infection in chicken embryo fibroblasts (CEFs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA- miRNA-mRNA interaction networks were further predicted. Moreover, circ-EZH2 was selected to determine its effect on NDV infection in CEFs. ResultsNDV infection altered circRNA expression profiles in CEFs, and 86 significantly DE circRNAs were identified. GO and KEGG enrichment analyses revealed significant enrichment of DE circRNAs for metabolism-related pathways, such as lysine degradation, glutaminergic synapse, and alanine, aspartic-acid, and glutamic-acid metabolism. The circRNA- miRNA-mRNA interaction networks further demonstrated that CEFs might combat NDV infection by regulating metabolism through circRNA-targeted mRNAs and miRNAs. Furthermore, we verified that circ-EZH2 overexpression and knockdown inhibited and promoted NDV replication, respectively, indicating that circRNAs are involved in NDV replication. ConclusionsThese results demonstrate that CEFs exert antiviral responses by forming circRNAs, offering new insights into the mechanisms underlying NDV-host interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据