4.7 Article

Genomic landscape and gene expression profiles of feline oral squamous cell carcinoma

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2023.1079019

关键词

whole exome sequencing; feline oral squamous cell carcinoma; human head and neck cancer; variant calling comparisons; cancer

向作者/读者索取更多资源

By using whole exome sequencing and RNA sequencing, we have identified somatic mutations and gene expression changes associated with the occurrence of feline oral squamous cell carcinoma (FOSCC). FOSCC can serve as a comparative model for studying human head and neck squamous cell carcinoma (HNSCC) due to its similar formation and features. Our preliminary study reveals that FOSCC shows molecular similarities to human oral squamous cell carcinoma, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways.
Feline oral squamous cell carcinoma (FOSCC) is a cancer of the squamous cell lining in the oral cavity and represents up to 80% of all oral cancers in cats, with a poor prognosis. We have used whole exome sequencing (WES) and RNA sequencing of the tumor to discover somatic mutations and gene expression changes thatmay be associated with FOSCC occurrence. FOSCC offers a potential comparative model to study human head and neck squamous cell carcinoma (HNSCC) due to its similar spontaneous formation, and morphological and histological features. In this first study using WES to identify somatic mutations in feline cancer, we have identified tumor-associated gene mutations in six cats with FOSCC and found some overlap with identified recurrently mutated genes observed in HNSCC. Four samples each had mutations in TP53, a common mutation in all cancers, but each was unique. Mutations in other cellular growth control genes were also found such as KAT2B and ARID1A. Enrichment analysis of FOSCC gene expression profiles suggests a molecular similarity to human OSCC as well, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways. In this preliminary study, we present exome and transcriptome results that further our understanding of FOSCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据