4.6 Article

Chitosan-Based Architectures as an Effective Approach for the Removal of Some Toxic Species from Aqueous Media

期刊

ACS OMEGA
卷 8, 期 11, 页码 10086-10099

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07264

关键词

-

向作者/读者索取更多资源

Modified uncrosslinked and crosslinked chitosan derivatives were investigated as green sorbents for copper (Cu2+) and lead (Pb2+) cation removal. The adsorption capacities of the chitosan-modified products were compared, and Cs/GA/MBA exhibited the highest adsorption capacity due to stable chelate structures formed. The metal uptake process was confirmed by comparing the surface topography of the free sorbents and the metal-loaded sorbents using atomic force microscopy (AFM).
Modified uncrosslinked and crosslinked chitosan derivatives were investigated as green sorbents for the removal of copper (Cu2+) and lead (Pb2+) cations from simulated solutions. In this regard, N, O carboxymethyl chitosan (N, O CMC), chitosan beads (Cs-g-GA), chitosan crosslinked with glutaraldehyde/methylene bisacrylamide (Cs/GA/MBA), and chitosan crosslinked with GA/epichlorohydrin (Cs/GA/ECH) were prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy analyses. Atomic force microscopy investigation was carried out to compare the surface topography of the prepared samples before and after the metal uptake. The kinetics of the removal process were investigated by pseudo-first-order and -second-order models. Moreover, the adsorption isotherms were carefully studied by applying Langmuir and Freundlich models. The data reveal that upon adsorption of copper(II) metal ions, all chitosan-modified products followed the Langmuir isotherm except for Cs/GA/ECH which followed the Freundlich isotherms, and the highest adsorption capacity (q(e)) was obtained for Cs/GA/MBA due to the formation of stable chelate structures between the metal cation and the functional groups present on the modified chitosan product. The order of metal uptake at the optimum pH value is as follows: Cs/GA/MBA (Cu: 95.7 mg/g, Pb: 99.15 mg/g), Cs/GA/ECH (Cu: 80.4 mg/g, Pb: 93.14 mg/g), Cs-g-GA (Cu: 77 mg/g, Pb: 88.4 mg/g), and N, O CMCh (Cu: 30.2 mg/g, Pb: 44.8 mg/g). The AFM data confirmed the metal uptake process by comparing the roughness and height measurements of the free sorbents and the metal-loaded sorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据