4.6 Article

Reactive Extraction of Betaine from Sugarbeet Processing Byproducts

期刊

ACS OMEGA
卷 8, 期 12, 页码 11029-11038

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07845

关键词

-

向作者/读者索取更多资源

Betaine from natural sources is still preferred over its synthetic analogue in secondary industries. In this study, reactive extraction of betaine from sugarbeet industry byproducts was investigated. Dinonylnaphthalenedisulfonic acid (DNNDSA) was used as the extraction agent, and various factors affecting betaine extraction were discussed. The results showed that reactive extraction has great potential for betaine recovery due to its high efficiency, simplicity, low energy demand, and cost.
Betaine from natural sources is still preferred over its synthetic analogue in secondary industries. It is currently obtained by expensive separation means, which is one of the main reasons for its high cost. In this study, reactive extraction of betaine from sugarbeet industry byproducts, that is, molasses and vinasse, was investigated. Dinonylnaphthalenedisulfonic acid (DNNDSA) was used as the extraction agent, and the initial concentration of betaine in the aqueous solutions of byproducts was adjusted to 0.1 M. Although maximum efficiencies were obtained at unadjusted pH values (pH 6, 5, and 6 for aqueous betaine, molasses, and vinasse solutions, respectively), the effect of aqueous pH on betaine extraction was negligible in the range of 2-12. The possible reaction mechanisms between betaine and DNNDSA under acidic, neutral, and basic conditions were discussed. Increasing the extractant concentration significantly increased (especially in the range of 0.1-0.4 M) the yields, and temperature positively (but slightly) affected betaine extraction. The highest extraction efficiencies (similar to 71.5, 71, and 67.5% in a single step for aqueous betaine, vinasse, and molasses solutions, respectively) were obtained with toluene as an organic phase solvent, and it was followed by dimethyl phthalate, 1-octanol, or methyl isobutyl ketone, indicating that the efficiency increased with decreasing polarity. Recoveries from pure betaine solutions were higher (especially at higher pH values and [DNNDSA] < 0.5 M) than those from vinasse and molasses solutions, indicating the adverse influence of byproduct constituents; however, the lower yields were not due to sucrose. Stripping was affected by the type of organic phase solvent, and a significant amount (66-91% in single step) of betaine in the organic phase was transferred to the second aqueous phase using NaOH as the stripping agent. Reactive extraction has a great potential for use in betaine recovery due to its high efficiency, simplicity, low energy demand, and cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据