4.6 Article

La-Doped CeO2 Quantum Dots: Novel Dye Degrader, Antibacterial Activity, and In Silico Molecular Docking Analysis

期刊

ACS OMEGA
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07753

关键词

-

向作者/读者索取更多资源

This study successfully synthesized La-doped CeO2 quantum dots with different concentrations (2%, 4%, 6%) using a hydrothermal approach. The structural, elemental, optical, and morphological properties of the dots were analyzed. It was found that La doping suppressed the crystallinity and improved the dispersion of CeO2 quantum dots. The dots also exhibited antibacterial activity against Escherichia coli and remarkable photocatalytic degradation of methylene blue.
The current work demonstrates a novel synthesis of different concentrations of La-doped (2, 4, and 6 wt %) CeO2 quantum dots (QDs) using a hydrothermal approach. This research aimed to examine the dye degradation efficiency, antibacterial activity, and in silico molecular docking analysis of La-doped CeO2 QDs. The structure, elemental composition, optical properties, d-spacing, and morphological features of QDs were examined using various methods. XRD spectra exhibited the cubic structure of CeO2, and the crystallinity was suppressed upon La doping. TEM revealed the formation of cubic-shaped QDs of CeO2, and the incorporation of La decreased agglomeration. UV-vis absorption spectra showed a red shift upon La doping, assigned to a decrease in band gap energy. 6% La-doped CeO2 showed significant antibacterial activity against Escherichia coli at higher concentrations in comparison to ciprofloxacin. La-CeO2 was proposed as a putative inhibitor of beta-lactamaseE. coli and DNA gyraseE. coli relying on the outcomes of a molecular docking analysis that was in improved accord with in vitro bactericidal activity. Moreover, the prepared QDs exhibited a remarkable photocatalytic degradation of methylene blue in a basic medium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据