4.7 Article

Effect of Seed Priming with Endophytic Bacillus subtilis on Some Physio-Biochemical Parameters of Two Wheat Varieties Exposed to Drought after Selective Herbicide Application

期刊

PLANTS-BASEL
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/plants12081724

关键词

Triticum aestivum L.; stress combination; herbicide; drought; tolerance; endophytic Bacillus subtilis; plant-microbe interaction

向作者/读者索取更多资源

This study investigated the effects of seed priming with endophytic bacteria Bacillus subtilis (strains 104 and 26D) on the growth and tolerance of wheat plants under combined herbicide and drought stress. The results showed that both strains exhibited herbicide and drought tolerance and improved seed germination and early seedlings' growth. Under the stress conditions, the strains mitigated the negative impacts on plant growth and facilitated faster recovery after stress.
Wheat plants are frequently exposed to combined herbicide and drought stress (HDS) which induces complex responses negatively, affects productivity, and is becoming more exacerbated with current climate change. In this work, we studied the influence of seed priming with endophytic bacteria Bacillus subtilis (strains 104 and 26D) on growth and tolerance of two wheat (Triticum aestivum L.) varieties (E70-drought tolerant; SY-drought susceptible) exposed to soil drought after application of selective herbicide Sekator (R) Turbo in pot experiments under controlled conditions; 17-day-old plants sprayed with herbicide and after 3 days were subjected to soil drought by stopping irrigating the plants for 7 days with subsequent resumption of normal irrigation (recovery). Additionally, the growth of tested strains (104, 26D) in the presence of different concentrations of herbicide Sekator (R) Turbo and drought (PEG-6000) were evaluated. It was established that both strains are herbicide and drought tolerant and capable to improve seed germination and early seedlings' growth under different herbicide and drought stress degrees. The results of pot experiments showed that HDS exposure declined growth (plant length, biomass), photosynthetic pigments (chlorophyll a and b), leaf area, and increased lipid peroxidation (LPO) and proline accumulation in plants, demonstrating higher damaging effects for SY variety. Strains 104 and 26D mitigated (in different levels) such negative impacts of HDS on growth of both varieties by increasing length of roots and shoots, biomass, photosynthetic pigments (chlorophyll a and b), and leaf area, reducing stress-caused LPO (i.e., malondialdehyde), and regulating proline biosynthesis, as well as contributing to a faster recovery of growth, photosynthetic pigments, and redox-status of plants in post-stress period in comparison with non-primed plants. These ultimately manifested in forming a better grain yield of both varieties primed with 104, 26D, and exposed to HDS. Thus, both strains 104 and 26D (which are herbicide and drought tolerant) may be used as seed priming agents to improve wheat HDS tolerance and grain yield; however, strain 104 more effectively protected plants of E70, while strain 26D-plants of SY. Further research should be focused on understanding the mechanisms that determine the strain and variety-specificity of endophytic symbiosis and the role of bacteria in the modulation of physiological states of primed plants under stress conditions, including HDS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据