4.7 Article

Analysis of Potato Physiological and Molecular Adaptation in Response to Different Water and Nitrogen Combined Regimes

期刊

PLANTS-BASEL
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/plants12081671

关键词

potato; transcriptome; adaptable mechanism; water and nitrogen interaction

向作者/读者索取更多资源

The study found that potato plants adapt to changes in soil water and nitrogen content by altering gene expression and physiological characteristics. Genes related to photosynthetic pigments and oxygen release complex were up-regulated, while genes encoding rate-limiting enzymes in the Calvin-Benson-Bassham cycle were increased. Furthermore, genes related to root nitrogen metabolism were highly expressed, and protein content in the tuber increased. A molecular model of potato responses to alterations in soil water and nitrogen content was constructed.
Water and nitrogen are essential for potato growth and development. We aim to understand how potato adapts to changes in soil water and nitrogen content. Potato plant adaptations to changes in soil moisture and nitrogen levels were analyzed at the physiological and transcriptomic levels in four treatment groups: adequate nitrogen under drought, adequate nitrogen under sufficient irrigation, limited nitrogen under drought, and limited nitrogen under sufficient irrigation. Many light-capture pigment complex genes and oxygen release complex genes were differentially expressed in leaves when nitrogen levels were increased under drought conditions, and several genes encoding rate-limiting enzymes in the Calvin-Benson-Bassham cycle were up-regulated; furthermore, leaf stomatal conductance decreased, whereas the saturated vapor pressure difference and relative chlorophyll content in the chloroplasts increased. StSP6A, a key gene in potato tuber formation, was down-regulated in response to increased nitrogen application, and the stolon growth time was prolonged. Genes related to root nitrogen metabolism were highly expressed, and protein content in the tuber increased. Weighted gene co-expression network analysis (WGCNA) revealed 32 gene expression modules that responded to changes in water and nitrogen levels. A total of 34 key candidate genes were identified, and a preliminary molecular model of potato responses to alterations in soil water and nitrogen content was constructed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据