4.6 Article

Variations of arbuscular mycorrhizal fungi following succession stages in a tropical lowland rainforest ecosystem of South China

期刊

FRONTIERS IN ECOLOGY AND EVOLUTION
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fevo.2023.1125749

关键词

arbuscular mycorrhizal fungi; succession stages; soil physicochemical properties; tropical lowland rainforest; Nature Reserve of Ganshenling

类别

向作者/读者索取更多资源

The grasslands in Ganshenling Nature Reserve in Hainan Island were unable to naturally restore to secondary forests, and it was unknown if the microorganisms in the 40-year and 60-year secondary forests recovered to the same level. This study explored the community changes in arbuscular mycorrhizal fungi (AMF) in different successional stages and their correlation with soil physicochemical properties.
IntroductionThe grasslands in the Nature Reserve of Ganshenling, in the south of Hainan Island, were first formed after deforestation disturbance before a natural restoration of shrubs and secondary forests. However, the stages of grassland and shrubs in some parts of Ganshenling regions could not be naturally restored to secondary forests. In addition, the forest form of the secondary forest after 40 years (40a) of succession was similar to that of the secondary forest of 60 years (60a). However, it was not known whether the microorganisms recovered to the level of the secondary forest of 60a. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that can improve the nitrogen and phosphorus absorption of plants and play a key role in secondary forest succession. An understanding of the essential role of soil AMF in secondary forest succession of tropical rainforest in Ganshenling regions is still limited. MethodsTherefore, the soil of 0-10 cm was collected with the help of a 5-point sampling method in grassland, shrubs, and second tropical lowland rainforest of 40a and 60a. We studied community changes in AMF with the succession and explored the impacts of soil physicochemical properties on soil AMF. ResultsOur findings were as follows: (1) Different successional stages showed divergent effects on soil AMF communities. (2) After 40a recovery, the alpha-diversity indices of AMF recovered to the level of secondary forest of 60a, but the similarity of soil AMF communities only recovered to 25.3%. (3) Species richness of common species, rare species, and all the species of AMF showed a significantly positive correlation with soil nitrogen. (4) OTU10; OTU6, OTU9, and OTU141; OTU3 and OTU38; and OTU2, OTU15, OTU23, and OTU197 were significantly unique AMF for grasslands, shrubs, and secondary forests of 40a and 60a, respectively. (5) The phylogenetic tree and the heatmap of AMF showed that the OTUs in grasslands and shrubs were in contrast to the OTUs in secondary forests of 40a and 60a. DiscussionWe concluded that the succession of a secondary forest after deforestation disturbance was probably limited by its AMF community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据