4.7 Article

Immobilization of esterase from Bacillus subtilis on Halloysite nanotubes and applications on dibutyl phthalate degradation

期刊

出版社

ELSEVIER
DOI: 10.1016/j.eti.2023.103113

关键词

Esterase; Dibutyl phthalate; Halloysite; Enzyme immobilization; Enzymatic degradation

向作者/读者索取更多资源

This study investigated the degradation of dibutyl phthalate (DBP) using esterase and lipase enzymes from different microorganisms, and examined the feasibility of immobilizing the most effective enzyme on a clayey material. The results showed that esterase from Bacillus subtilis had the highest degradation efficiency and immoblization improved thermal and storage stability. Additionally, the immobilized enzyme composite maintained high catalytic activity after 7 continuous cycles.
Dibutyl phthalate (DBP) is one of the listed phthalic acid esters (PAEs) known as the priority toxicants which exhibit carcinogenic and teratogenic properties and is responsible for endocrine disruption. Therefore, its removal has become a matter to tackle with. In this work, the feasibility of DBP degradation by esterase and lipase enzymes obtained from various microorganisms and the immobilization of the most effective in a clayey material were investigated. Esterase from Bacillus subtilis exhibited the highest degradation efficiency reaching a complete degradation. Its immobilization onto halloysite nanotubes (HNTs) by adsorption method was studied by response surface methodology using a central composite design face-centered. The four selected factors that affect the HNT-enzyme composite generation were: pH, adsorption time, enzyme/HNT (E/H) ratio, and adsorption temperature, and the optimal conditions were determined (pH 7, time 360 min, E/H ratio 0.2, temperature 30oC). Consequently, the activity did not significantly decrease by immobilization, and the adsorption efficiency and relative activity were determined to be 73.15% and 82.7%, respectively. Besides, the immobilization enhanced thermal and storage stability. As for enzyme reusability, after 7 continuous cycles, the composite maintained almost 75% of its initial activity. Both the free enzyme (1 mg/mL) and the composite degraded 100 mg/L DBP with 100% efficiency and several byproducts were detected. Moreover, the composite could be reused for 7 cycles keeping a remarkable catalytic activity. Overall, this study indicated that the HNT-enzyme composite may be used as an effective candidate for remediation of the environmental media contaminated with DBP and other PAEs.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据