4.6 Article

Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter

期刊

ANTIBIOTICS-BASEL
卷 12, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics12061006

关键词

plasmids; litter; conjugation; Salmonella

向作者/读者索取更多资源

Animal manures contain a large reservoir of antimicrobial resistance (AMR) genes, which could potentially transfer to antibiotic-susceptible pathogens. This study examined the ability of poultry litter microbiota to transmit AMR and found a high abundance of AMR to streptomycin and tetracycline, as well as a significant AMR gene load. However, experiments showed that plasmid transfer and transmission of resistance in poultry litter were low under commonly used conditions.
Animal manures contain a large and diverse reservoir of antimicrobial resistance (AMR) genes that could potentially spillover into the general population through transfer of AMR to antibiotic-susceptible pathogens. The ability of poultry litter microbiota to transmit AMR was examined in this study. Abundance of phenotypic AMR was assessed for litter microbiota to the antibiotics: ampicillin (Ap; 25 & mu;g/mL), chloramphenicol (Cm; 25 & mu;g/mL), streptomycin (Sm; 100 & mu;g/mL), and tetracycline (Tc; 25 & mu;g/mL). qPCR was used to estimate gene load of streptomycin-resistance and sulfonamide-resistance genes aadA1 and sul1, respectively, in the poultry litter community. AMR gene load was determined relative to total bacterial abundance using 16S rRNA qPCR. Poultry litter contained 10(8) CFU/g, with Gram-negative enterics representing a minor population (<10(4) CFU/g). There was high abundance of resistance to Sm (10(6) to 10(7) CFU/g) and Tc (10(6) to 10(7) CFU/g) and a sizeable antimicrobial-resistance gene load in regards to gene copies per bacterial genome (aadA1: 0.0001-0.0060 and sul1: 0.0355-0.2455). While plasmid transfer was observed from Escherichia coli R100, as an F-plasmid donor control, to the Salmonella recipient in vitro, no AMR Salmonella were detected in a poultry litter microcosm with the inclusion of E. coli R100. Confirmatory experiments showed that isolated poultry litter bacteria were not interfering with plasmid transfer in filter matings. As no R100 transfer was observed at 25 & DEG;C, conjugative plasmid pRSA was chosen for its high plasmid transfer frequency (10(-4) to 10(-5)) at 25 & DEG;C. While E. coli strain background influenced the persistence of pRSA in poultry litter, no plasmid transfer to Salmonella was ever observed. Although poultry litter microbiota contains a significant AMR gene load, potential to transmit resistance is low under conditions commonly used to assess plasmid conjugation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据