4.6 Article

Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) Essential Oil against Foodborne Illness Pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus

期刊

ANTIBIOTICS-BASEL
卷 12, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics12030485

关键词

thyme essential oil; antibacterial agent; antibiofilm activity; natural food preservatives; foodborne illness pathogens

向作者/读者索取更多资源

Nowadays, researchers have shifted their focus towards essential oils as possible antimicrobials and preservatives of natural origin due to the wide spread of foodborne illness and growing concerns about synthetic food additives. Thyme essential oil (TEO) has shown good potential as an alternative food additive to inhibit the growth of foodborne bacteria and counteract biofilm-related infections in the food industry. The antibacterial and antibiofilm properties of TEO were evaluated through in vitro tests, and the results suggest its efficacy against the tested foodborne pathogens.
Nowadays, the wide spread of foodborne illness and the growing concerns about the use of synthetic food additives have shifted the focus of researchers towards essential oils (EOs) as possible antimicrobials and preservatives of natural origin. Thanks to their antimicrobial properties against pathogenic and food spoilage microorganisms, EOs have shown good potential for use as alternative food additives, also to counteract biofilm-forming bacterial strains, the spread of which is considered to be among the main causes of the increase in foodborne illness outbreaks. In this context, the aim of this study has been to define the antibacterial and antibiofilm profile of thyme (Thymus vulgaris L.) essential oil (TEO) against widespread foodborne pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. TEO chemical composition was analyzed through gas chromatography-mass spectrometry (GC-MS). Preliminary in vitro antibacterial tests allowed to qualitatively verify TEO efficacy against the tested foodborne pathogens. The subsequent determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values allowed to quantitatively define the bacteriostatic and bactericidal effects of TEO. To evaluate the ability of essential oils to inhibit biofilm formation, a microplate assay was performed for the bacterial biofilm biomass measurement. Results suggest that TEO, rich in bioactive compounds, is able to inhibit the growth of tested foodborne bacteria. In addition, the highlighted in vitro anti-biofilm properties of TEO suggest the use of this natural agent as a promising food preservative to counteract biofilm-related infections in the food industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据