4.7 Article

Effect of Pulsed Electric Field on the Chicken Meat Quality and Taste-Related Amino Acid Stability: Flavor Simulation

期刊

FOODS
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/foods12040710

关键词

PEF; amino acid; chicken; flavor; quality; intensity; meat color

向作者/读者索取更多资源

Meat contains amino acids related to taste. The use of pulsed electric fields (PEF) for non-thermal processing could potentially affect the taste and flavor of meat. In this study, the effects of low-intensity (LPEF) and high-intensity (HPEF) PEF treatments on the physicochemical characteristics of chicken breast were investigated. Both LPEF and HPEF did not adversely affect the quality of the chicken breast.
Meat contains several amino acids related to taste, which have a significant impact on the overall acceptability of consumers. A number of volatile compounds have been studied in relation to meat flavor, but amino acids have not been fully explored in relation to the taste of raw or cooked meat. It would be interesting to find any changes in physicochemical characteristics, especially the level of taste-active compounds and flavor content during non-thermal processing such as pulsed electric fields (PEF), for commercial reasons. The effect of PEF at low intensity (LPEF; 1 kV/cm) and comparatively high intensity (HPEF; 3 kV/cm) with different pulse numbers (25, 50, and 100) was investigated on the physicochemical characteristics of chicken breast, including the free amino acid content (related to umami, sweet, bitter, or fresh pleasant taste). PEF is regarded as a nonthermal technology; however, HPEF induces moderate temperature rises as it increases with the treatment intensity (i.e., electric field strength and pulse number). The pH, shear force, and cook loss (%) of the LPEF and untreated samples were not affected by the treatments, but the shear force of the LPEF and untreated samples was lower than that of HPEF groups that showed PEF-induced slight structural modifications resulting in a more porous cell. In the case of color parameters, the lightness of meat (L*) was significantly higher with treatment intensity, whereas both a* and b* were unaffected by the PEF treatments. Moreover, PEF treatment significantly (p < 0.05) affected umami-related free amino acids (FAAs; glutamic acid and aspartic acid) and leucine and valine, which are precursors of flavor compounds. However, PEF decreases the level of bitter taste contributing FAAs such as lysine and tyrosine, which may prevent the formation of fermented flavors. In conclusion, both PEF treatments (LPEF and HPEF) did not adversely impact the physicochemical quality of chicken breast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据