4.7 Article

Tissue Bioconcentration Pattern and Biotransformation of Per-Fluorooctanoic Acid (PFOA) in Cyprinus carpio (European Carp)-An Extensive In Vivo Study

期刊

FOODS
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/foods12071423

关键词

PFOA; bioconcentration; biotransformation; Cyprinus carpio

向作者/读者索取更多资源

The bioaccumulation and biotransformation of perfluorooctanoic acid (PFOA) in carp were evaluated in this study. PFOA and its metabolites were found in various organs of the fish, with the highest concentrations detected in the gallbladder, kidneys, brain, liver, and gonads. This study highlights the importance of monitoring and risk assessment of new synthetic chemicals in aquatic resources.
The perfluoroalkyl substances (PFAS) represent a persistent class of synthetic chemicals that spread in the environment as a result of industrialization. Due to their bioaccumulative and endocrine disruption implications, these chemicals can affect food quality and human health, respectively. In the present study, the bioconcentration and biotransformation of perfluorooctanoic acid (PFOA) in common carp (Cyprinus carpio) were evaluated in a biphasic system (exposure and depuration). Carp were continuously exposed, under laboratory conditions, to 10 (Experiment 1) and 100 (Experiment 2) mu g/L PFOA for 14 weeks, followed by a wash out period of 3 weeks. Fish organs and tissues were collected at 8, 12, 14 weeks of exposure and at week 17, after the depuration period. The results obtained from the LC-MS/MS analysis showed the presence of PFOA in all studied organs. The highest values of PFOA were identified in the gallbladder (up to 2572 ng/g d.w.) in Experiment 1 and in the gallbladder (up to 18,640 ng/g d.w.) and kidneys (up to 13,581 ng/g d.w.) in Experiment 2. The average BCF varied between 13.4 and 158 L/Kg in Experiment 1 and between 5.97 and 80.3 L/Kg in Experiment 2. Four biotransformation products were identified and quantified in all organs, namely: PFBA, PFPeA, PFHxA, and PFHpA. PFBA was proven to be the dominant biotransformation product, with the highest values being determined after 8 weeks of exposure in the kidney, gallbladder, brain, liver, and gonads in both experiments. Because freshwater fish are an important food resource for the human diet, the present study showed the fishes' capacity to accumulate perfluoroalkyl substances and their metabolites. The study revealed the necessity of monitoring and risk studies of new and modern synthetic chemicals in aquatic resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据