4.6 Article

A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients

期刊

METABOLITES
卷 13, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/metabo13050589

关键词

colorectal cancer; metabolomics profiling; machine learning; biomarker discovery

向作者/读者索取更多资源

This study aimed to identify potential biomarkers and treatment targets for colorectal cancer (CRC) using high-throughput metabolomics. The study found five significantly differentially expressed metabolites in CRC patients compared to healthy controls, with aminoisobutyric acid being the metabolite with the highest discriminatory potential.
Colorectal cancer (CRC) is one of the most common and lethal diseases among all types of cancer, and metabolites play a significant role in the development of this complex disease. This study aimed to identify potential biomarkers and targets in the diagnosis and treatment of CRC using high-throughput metabolomics. Metabolite data extracted from the feces of CRC patients and healthy volunteers were normalized with the median normalization and Pareto scale for multivariate analysis. Univariate ROC analysis, the t-test, and analysis of fold changes (FCs) were applied to identify biomarker candidate metabolites in CRC patients. Only metabolites that overlapped the two different statistical approaches (false-discovery-rate-corrected p-value < 0.05 and AUC > 0.70) were considered in the further analysis. Multivariate analysis was performed with biomarker candidate metabolites based on linear support vector machines (SVM), partial least squares discrimination analysis (PLS-DA), and random forests (RF). The model identified five biomarker candidate metabolites that were significantly and differently expressed (adjusted p-value < 0.05) in CRC patients compared to healthy controls. The metabolites were succinic acid, aminoisobutyric acid, butyric acid, isoleucine, and leucine. Aminoisobutyric acid was the metabolite with the highest discriminatory potential in CRC, with an AUC equal to 0.806 (95% CI = 0.700-0.897), and was down-regulated in CRC patients. The SVM model showed the most substantial discrimination capacity for the five metabolites selected in the CRC screening, with an AUC of 0.985 (95% CI: 0.94-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据