4.6 Article

Gallium Nitrate Enhances Antimicrobial Activity of Colistin against Klebsiella pneumoniae by Inducing Reactive Oxygen Species Accumulation

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.00334-23

关键词

gallium; colistin; Klebsiella pneumoniae; reactive oxygen species; bacterial antioxidant activity; oxidative stress

向作者/读者索取更多资源

This study found that combining gallium nitrate (GaNt) with the antibiotic colistin can significantly enhance the antimicrobial activity against multidrug-resistant Klebsiella pneumoniae. Mechanistically, GaNt suppressed bacterial antioxidant activity, leading to the accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was further enhanced by colistin. Overall, GaNt has the potential to serve as a novel colistin adjuvant for improving the treatment outcomes of bacterial infections caused by multidrug-resistant K. pneumoniae.
Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections.IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae. This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据