4.6 Article

Murine Norovirus Interaction with Enterobacter cloacae Leads to Changes in Membrane Stability and Packaging of Lipid and Metabolite Vesicle Content

期刊

MICROBIOLOGY SPECTRUM
卷 11, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.04691-22

关键词

murine norovirus; commensal bacteria; outer membrane vesicle; lipidomics; metabolomics; microbiome; bacterial extracellular vesicle; Enterobacter cloacae; sphingolipids; vesicle content; OMV; bacterial vesicle content; gut microbiome; vesicle biogenesis

向作者/读者索取更多资源

Outer membrane vesicles (OMVs) serve as a means of communication for Gram-negative bacteria. Interaction with norovirus induces changes in OMV content, particularly in lipid accumulation and metabolite content, which may be linked to a shift in the mechanism of vesicle biogenesis.
Outer membrane vesicles (OMVs) are a primary means of communication for Gram-negative bacteria. The specific role of vesicle components in cellular communication and how components are packaged are still under investigation, but a correlation exists between OMV biogenesis and content. The two primary mechanisms of OMV biogenesis are membrane blebbing and explosive cell lysis, and vesicle content is based on the biogenesis mechanism. Hypervesiculation, which can be induced by stress conditions, also influences OMV content. Norovirus interaction with Enterobacter cloacae induces stress responses leading to increased OMV production and changes in DNA content, protein content, and vesicle size. The presence of genomic DNA and cytoplasmic proteins in these OMVs suggests some of the vesicles are formed by explosive cell lysis, so reduction or loss of these components indicates a shift away from this mechanism of biogenesis. Based on this, further investigation into bacterial stability and OMV content was conducted. Results showed that norovirus induced a dramatic shift in OMV lipid content. Specifically, the increased accumulation of phospholipids is associated with increased blebbing, thereby supporting previous observations that noroviruses shift the mechanism of OMV biogenesis. Slight differences in OMV metabolite content were also observed. While norovirus induced changes in OMV content, it did not change the lipid content of the bacterial outer membrane or the metabolite content of the bacterial cell. Overall, these results indicate that norovirus induces significant changes to OMV lipid architecture and cargo, which may be linked to a change in the mechanism of vesicle biogenesis.IMPORTANCE Extracellular vesicles from commensal bacteria are recognized for their importance in modulating host immune responses, and vesicle content is related to their impact on the host. Therefore, understanding how vesicles are formed and how their content shifts in response to stress conditions is necessary for elucidating their downstream functions. Our recent work has demonstrated that interactions between noroviruses and Enterobacter cloacae induce bacterial stress responses leading to hypervesiculation. In this article, we characterize and compare the lipid and metabolomic cargo of E. cloacae vesicles generated in the presence and absence of norovirus and show that viral interactions induce significant changes in vesicle content. Furthermore, we probe how these changes and changes to the bacterial cell may be indicative of a shift in the mechanism of vesicle biogenesis. Importantly, we find that noroviruses induce significant changes in vesicle lipid architecture and cargo that may be responsible for the immunogenic activity of these vesicles. Extracellular vesicles from commensal bacteria are recognized for their importance in modulating host immune responses, and vesicle content is related to their impact on the host. Therefore, understanding how vesicles are formed and how their content shifts in response to stress conditions is necessary for elucidating their downstream functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据