4.6 Article

Repurposing 9-Aminoacridine as an Adjuvant Enhances the Antimicrobial Effects of Rifampin against Multidrug-Resistant Klebsiella pneumoniae

期刊

MICROBIOLOGY SPECTRUM
卷 11, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.04474-22

关键词

K. pneumoniae; drug repurposing; drug combination; 9-aminoacridine; rifampin

向作者/读者索取更多资源

The increasing occurrence of extensively drug-resistant and pan-drug-resistant K. pneumoniae is a serious threat to public health. Drug repurposing and combination are effective strategies to combat these infections. The potential small molecule 9-AA has antimicrobial properties alone or in combination with RIF against drug-resistant K. pneumoniae, and can overcome resistance. Mechanistic studies show that 9-AA interacts with bacterial DNA and disrupts the proton motive force.
The increasing occurrence of extensively drug-resistant and pan-drug-resistant K. pneumoniae has posed a serious threat to global public health. Therefore, new antimicrobial strategies are urgently needed to combat these resistant K. pneumoniae-related infections. Drug repurposing and combination are two effective strategies to solve this problem. By a high-throughput screening assay of FDA-approved drugs, we found that the potential small molecule 9-aminoacridine (9-AA) could be used as an antimicrobial alone or synergistically with rifampin (RIF) against extensively/pan-drug-resistant K. pneumoniae. In addition, 9-AA could overcome the shortcomings of RIF by reducing the occurrence of resistance. Mechanistic studies revealed that 9-AA interacted with bacterial DNA and disrupted the proton motive force in K. pneumoniae. Through liposomeization and combination with RIF, the cytotoxicity of 9-AA was significantly reduced without affecting its antimicrobial activity. In addition, we demonstrated the in vivo antimicrobial activity of 9-AA combined with RIF without detectable toxicity. In summary, 9-AA has the potential to be an antimicrobial agent or a RIF adjuvant for the treatment of multidrug-resistant K. pneumoniae infections.IMPORTANCE Klebsiella pneumoniae is a leading cause of clinically acquired infections. The increasing occurrence of drug-resistant K. pneumoniae has posed a serious threat to global public health. We found that the potential small molecule 9-AA could be used as an antimicrobial alone or synergistically with RIF against drug-resistant K. pneumoniae in vitro and with low resistance occurrence. The combination of 9-AA or 9-AA liposomes with RIF possesses effective antimicrobial activity in vivo without detected toxicity. 9-AA exerted its antimicrobial activity by interacting with specific bacterial DNA and disrupting the proton motive force in K. pneumoniae. In summary, we found that 9-AA has the potential to be developed as a new antibacterial agent and adjuvant for RIF. Therefore, our study can reduce the risk of antimicrobial resistance and provide an option for the exploitation of new clinical drugs and a theoretical basis for the research on a new antimicrobial agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据