4.7 Article

Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation

期刊

ANTIOXIDANTS
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/antiox12020478

关键词

neutrophil; neutrophil extracellular trap; hypochlorous acid; myeloperoxidase; chronic inflammation; thiocyanate; selenocyanate; TEMPO

向作者/读者索取更多资源

Extracellular traps, known as NETs, are released by neutrophils and other immune cells as part of the innate immune response and are associated with various pathological conditions. This study investigated the efficacy of different antioxidant approaches in modulating the release of NETs. The results showed that thiocyanate, selenocyanate, and nitroxides could prevent NETosis in neutrophils when exposed to certain stimuli. These findings provide new insights into the potential use of MPO inhibitors and HOCl scavengers to prevent pathological NETosis.
Extracellular traps are released by neutrophils and other immune cells as part of the innate immune response to combat pathogens. Neutrophil extracellular traps (NETs) consist of a mesh of DNA and histone proteins decorated with various anti-microbial granule proteins, such as elastase and myeloperoxidase (MPO). In addition to their role in innate immunity, NETs are also strongly linked with numerous pathological conditions, including atherosclerosis, sepsis and COVID-19. This has led to significant interest in developing strategies to inhibit NET release. In this study, we have examined the efficacy of different antioxidant approaches to selectively modulate the inflammatory release of NETs. PLB-985 neutrophil-like cells were shown to release NETs on exposure to phorbol myristate acetate (PMA), hypochlorous acid or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. Studies with the probe R19-S indicated that treatment of the PLB-985 cells with PMA, but not nigericin, resulted in the production of HOCl. Therefore, studies were extended to examine the efficacy of a range of antioxidant compounds that modulate HOCl production by MPO to prevent NETosis. It was shown that thiocyanate, selenocyanate and various nitroxides could prevent NETosis in PLB-985 neutrophils exposed to PMA and HOCl, but not nigericin. These results were confirmed in analogous experiments with freshly isolated primary human neutrophils. Taken together, these data provide new information regarding the utility of supplementation with MPO inhibitors and/or HOCl scavengers to prevent NET release, which could be important to more specifically target pathological NETosis in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据