4.7 Article

Influence of Gelatin Source and Bloom Number on Gelatin Methacryloyl Hydrogels Mechanical and Biological Properties for Muscle Regeneration

期刊

BIOMOLECULES
卷 13, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/biom13050811

关键词

hydrogel; muscle regeneration; GelMA; tissue engineering; mechanical properties

向作者/读者索取更多资源

Approximately half of an adult human's body weight is made up of muscles. The source and bloom number of gelatin have been found to have an impact on the mechanical properties and biological activities of GelMA hydrogels.
Approximately half of an adult human's body weight is made up of muscles. Thus, restoring the functionality and aesthetics of lost muscle tissue is critical. The body is usually able to repair minor muscle injuries. However, when volumetric muscle loss occurs due to tumour extraction, for instance, the body will form fibrous tissue instead. Gelatin methacryloyl (GelMA) hydrogels have been applied for drug delivery, tissue adhesive, and various tissue engineering applications due to their tuneable mechanical properties. Here, we have synthesised GelMA from different gelatin sources (i.e., porcine, bovine, and fish) with varying bloom numbers, which refers to the gel strength, and investigated for the influence of the source of gelatin and the bloom number on biological activities and mechanical properties. The results indicated that the source of the gelatin and variable bloom numbers have an impact on GelMA hydrogel properties. Furthermore, our findings established that the bovine-derived gelatin methacryloyl (B-GelMA) has better mechanical properties than the other varieties composed of porcine and fish with 60 kPa, 40 kPa, and 10 kPa in bovine, porcine, and fish, respectively. Additionally, it showed a noticeably greater swelling ratio (SR) similar to 1100% and a reduced rate of degradation, improving the stability of hydrogels and giving cells adequate time to divide and proliferate to compensate for muscle loss. Furthermore, the bloom number of gelatin was also proven to influence the mechanical properties of GelMA. Interestingly, although GelMA made of fish had the lowest mechanical strength and gel stability, it demonstrated excellent biological properties. Overall, the results emphasise the importance of gelatin source and bloom number, allowing GelMA hydrogels to have a wide range of mechanical and excellent biological properties and making them suitable for various muscle tissue regeneration applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据