4.6 Article

Inhibition of Heterogeneous Nucleation in Water by Hydrogel Coating

期刊

RESEARCH
卷 6, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/research.0190

关键词

-

向作者/读者索取更多资源

Heterogeneous nucleation can be inhibited by utilizing hydrogel coatings, which isolate solid surfaces and water. These coatings raise the boiling temperature of water and reduce cavitation pressure on solid surfaces, making them promising for innovation in heat transfer and fluidic systems.
Heterogeneous nucleation plays a critical role in the phase transition of water, which can cause damage in various systems. Here, we report that heterogeneous nucleation can be inhibited by utilizing hydrogel coatings to isolate solid surfaces and water. Hydrogels, which contain over 90% water when fully swelled, exhibit a high degree of similarity to water. Due to this similarity, there is a great energy barrier for heterogeneous nucleation along the water-hydrogel interface. Additionally, hydrogel coatings, which possess polymer networks, exhibit higher fracture energy and more robust adhesion to solid surfaces compared to water. This high fracture and adhesion energy acts as a deterrent for fracture nucleation within the hydrogel or along the hydrogel-solid interface. With a hydrogel layer approximately 100 mu m thick, the boiling temperature of water under atmospheric pressure can be raised from 100 to 108 degrees C. Notably, hydrogel coatings also result in remarkable reductions in cavitation pressure on multiple solid surfaces. We have demonstrated the efficacy of hydrogel coatings in preventing damages resulting from acceleration-induced cavitation. Hydrogel coatings have the potential to alter the energy landscape of heterogeneous nucleation on the water-solid interface, making them an exciting avenue for innovation in heat transfer and fluidic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据